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Abstract— This paper presents a novel whole body motion
estimation method by fitting a deformable articulated model
of the human body into the 3D reconstructed volume obtained
from multiple video streams. The advantage of the proposed
method is two fold: (1) combination of a robust estimator and
ICP algorithm with Kd-tree search in pose and normal space
make it possible to track complex and dynamic motion robustly
against noise and interference between limb and torso, (2) the
hierarchical estimation and backtrack re-estimation algorithm
enable accurate estimation.

The power to track challenging whole body motion in real
environment is also presented.

I. INTRODUCTION

Motion capture technique is used for measuring whole

body motion in various applications: including making char-

acter animation in film and game industries, biomechanical

analysis and engineering on ergonomics and human factors.

Demand for whole body motion is also increasing in the field

of robotics, such as gesture based user interface and motion

generation of a humanoid robot[1].

However, the state-of-the-art commercial systems, for ex-

ample an optical or magnetic motion capture system, are

expensive and generally force a user to put on restrictive

markers all over the body.

In this paper, a novel marker-less motion capture technique

is proposed that can track complex and dynamic whole body

motion robustly from multiple video streams.

A. Previous work

There is a growing demand for measuring whole body

motion in daily environment for surveillance, user interface

and so on. For this purpose, easy-to-use and unconstrained

marker-less motion capture technique has been an active

research topic for the last decade[2].

In this technique, a user is observed by a single or multiple

video cameras and captured images are processed to estimate

the user’s pose using computer vision techniques. Single

camera approach[3], [4], [5] is convenient, however occlu-

sion and ambiguity is difficult to be solved in a monocular

framework, thus this approach is appropriate for rough pose

estimation used in gesture and motion pattern recognition.

Multiple cameras approach is typically used to estimate

the accurate motion[6], [7], [8], [9], [10] and it gains much

attention in the hope that it will replace the state-of-the-art

motion capture systems.
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The latter approach can be categorized into 2 major

classes. The first class is called motion tracking. Suppose the

pose at time t−1 is known, the pose at time t is expected to

be within the neighborhood of the pose at time t− 1. Thus,

the pose at time t is efficiently estimated by searching for the

local minimum of some error functions only around the pose

at time t − 1. Delamarre et al. defined an articulated body

model based on cylinder and rectangular parallelepiped, and

sequentially estimated the latest pose based on the previous

estimation by minimizing the distance between the silhouette

in the captured images and the edges of the body model

projected onto the same images using a gradient descent

method[7].

However, this class needs initial solution and also needs

to estimate the pose from a scratch when tracking fails. The

second class is to infer the pose directly from images using

some exemplar-based learning techniques. Gavrila et al.

defined a kinematic model of the human body by using super

quadrics, and built a data base that learns numerous pairs of

2D projection of the body model and its corresponding pose

parameters. Input images from 4 cameras are compared with

the images in the data base using chamfer distance and the

pose parameters corresponding to the most similar one is

retrieved[6].

What captured onto images is a surface of the body,

thus some researchers have proposed to explicitly handle

the deformable skin in their body models for accurate pose

estimation. Illic et al. represented a skin model by using

implicit functions and estimated the shape of the upper body

using a Free Form Deformation (FFD) method[9]. However,

this model doesn’t have joint structure inside, so it is not

appropriate for motion estimation.

Cheung et al. proposed a method to estimate both the

structure of the articulated body model, i.e. joint position,

and the motion simultaneously. They divided colored sur-

face points (CSP) into groups of different rigid motion

and estimated the rigid transformation for each group in

consecutive images[8]. CSP is a 3D point on the body

surface confirmed using multiple-view geometry. However,

generating an articulated body model is a complex process

and it is not always possible to estimate all the joint positions

correctly.

Kehl et al. proposed a method to estimate the motion by

using a deformable skin model with joint structure[10]. The

3D shape of the user is reconstructed using a volume inter-

section method and the points on the volume are searched

for the nearest one to each vertex on the skin model. These

correspondences are used to move the pose and the joints to

the right direction by minimizing the sum of errors using a
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gradient descent method.

In this paper, we assume continuity in motion and deal

with the problem of estimating the pose at time t when the

pose at time t − 1 is given. As for the pose at time 0, any

exemplar-based approach such as[5] can be used.

Our method is most similar to Kehl’s approach. We use a

similar deformable model with joint structure against the 3D

reconstruction from multiple video streams. The advantage

of our method is two fold:

1) Combination of a robust estimator and ICP with Kd-

tree search in pose and normal space make it possible

to track complex and dynamic motion robustly against

noise and interference between limb and torso

2) The hierarchical estimation and backtrack re-

estimation process enable accurate estimation

In the following, the body model composed of a de-

formable skin and joint structure is described in Section

2. In Section 3, the proposed motion estimation method

is explained in detail. Our method has been verified in

real environment and the results are evaluated in Section 4.

Finally, we conclude in Section 5.

II. ARTICULATED DEFORMABLE MODEL

A. Definition of the body model

Structure Link

Joint Link

1 DOF Joint

2 DOF Joint

3 DOF Joint

Body Center

  3DOF Translation

  3DOF Rotation

  3DOF Joint

Fig. 1. Body model

The body model used in this research is composed of the

link model that represents the joint structure and the skin

model that represents the surface of the body as shown in

Fig.1. The skin model is deformed naturally following the

change in the joint angles.

The link model has 29 DOF for joints, 3 DOF for body

translation and 3 DOF for body rotation. Since the position

of each vertex on the skin model is affected by the links in

the neighborhood as described later, we introduce two types

of links in the link model. The first type is a joint link that

connects two joints in parent-child relationship. The other is

a structure link that has no joint but adds partial stiffness to

the skin model like a rib to avoid unnatural deformation of

the skin model.

The skin model is obtained by the 3D reconstruction

process explained in Section IV-A.

B. Skin deformation

Distance to Link

Vertex mi

xi1

Link 1
Link 2

xi2

xi3

Link 3

Link j

xij

Fig. 2. Distance between a vertex on the skin model and a link

In the surface deformation method[11] used in Kehl’s

approach[10], control points are assigned along the link

structure. Their positions are moved or they degenerate

according to the change in the joint angles, and the smooth

surface is generated from these control points. However, it

cannot handle the situation where several links which have

no direct connection to each other gather close under the

skin model as is the case with the shoulder in Fig.2.

To solve this problem, the position of i-th vertex on

the skin model in the body centered coordinates frame is

determined to be m′

i(θ), a function of the joint angles θ.

As shown in Fig.2, the distance xi,j between the i-the

vertex and the j-th link is defined as the length of the shortest

path from the i-th vertex to the j-th link under the constraint

that the path never penetrate the skin model. To calculate

xi,j , a graph is constructed where all the vertices in the skin

model and all the links are defined as nodes, and all the

edges in the skin model are defined as arcs. Then, for each

vertex in the skin model, an arc from the vertex to j-th link

is added to the graph if a segment from the vertex to j-th link

doesn’t intersect with the skin model. The weight of an arc is

set as the Euclid distance between its terminal nodes. Finally,

the distance xi,j is calculated using Dijkstra’s shortest path

algorithm.

Next, the weight between the i-th vertex and the j-th link

is defined by a function w(xi,j) as in Eq.(1), and the new

position of the i-th vertex is defined as a sum of weighted

positions as in Eq.(2).

w(xij) = a · e−bxij

∑

j

w(xij) = 1 (1)

(

m′

i(θ)
1

)

=
L

∑

j=1

w(xij) · T j(θ) · T−1
j (0) ·

(

mi

1

)

(2)
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where a and b in Eq.(1) are constant determined empirically.

Tj(θ) is a transformation matrix from the j-th link’s coordi-

nates frame to the body centered coordinates frame given the

joint angles θ. mi is the position of the i-the vertex in the

body centered coordinates frame when all the joint angles

equal to 0, that is exactly the pose shown in Fig.1.

III. MOTION ESTIMATION

A. Formulation

3D reconstruction 

at time t

Estimated motion

at time t-1

Correspondence

detection

Estimated motion

at time t

'im

ir

'Gim

ir

FittingFitting

Fig. 3. Motion estimation based on correspondence detection

By applying a method explained in Section IV-A to

multiple video streams, 3D shape of the target user at time t

can be reconstructed. If the motion parameters, i.e. the joint

angles θ, body translation t and body rotation R, at time t−1
are given, the motion estimation problem is formulated as a

minimization problem of Eq.(3) given the motion parameters

at the previous time frame.

E = min
∑

i

‖ m′G
i − ri ‖

2 (3)

where m′G
i is the position of the i-th vertex in the skin model

and ri is the corresponding point on the reconstructed volume

as show in Fig.3.

This formulation is an extension of the ICP algorithm[12],

a rigid body alignment algorithm, to a deformable object

alignment algorithm. We have already proposed the basis of

this formulation in the hand shape estimation problem[13]. In

this paper, several new algorithms are introduced to enhance

the original algorithm for tracking much complex motion

including whole body motion.

If the error in Eq.(3) follows a gaussian distribution, the

motion parameters can be estimated by minimizing Eq.(3)

by solving the least squares method.

But the real error distribution usually doesn’t follow a

gaussian distribution because of measurement errors and

occlusion, thus the effect of outliers makes the localiza-

tion process unstable. Therefore, Wheeler proposed a tech-

nique to apply M-estimator to approximate the real error

distribution[14]. M-estimator is a generalized form of the

least squares method and is formulated as Eq.(4).

E = min
∑

i

ρ(‖ R · m′

i(θ) + t − ri ‖
2) (4)

where ρ(z) is a function of the error z.

The motion parameters p = (θ, t, R) that satisfy Eq.(4)

are calculated by solving Eq.(5) equals 0.

δE

δp
=

∑

i

δρ(zi)

δzi

δzi

δp
(5)

where zi =‖ R · m′

i(θ) + t − ri ‖
2.

Here, we introduce a weight function e(z) that represents

errors as in Eq.(6).

e(z) =
1

z

δρ

δz
(6)

Then, Eq.(5) can be rewritten as Eq.(7). If we ignore the

fact that e(z) is a function of z, this is a form of weighted

least squares.

δE

δp
=

∑

i

e(zi)zi

δzi

δp
(7)

In this study, Lorentzian distribution is chosen as a prob-

ability distribution of errors to exclude the effect of outliers

and the weight function e(z) is defined as in Eq.(8).

e(z) =

(

1 +
1

2

( z

σ

)2
)

−1

(8)

Eq.(4) can be solved using the conjugate gradient method

and p that minimizes the error is obtained.

B. Correspondence detection by Kd-tree search in pose and

normal space

To solve Eq.(4), we have to find ri on the reconstructed

volume corresponding to m ′

i. If we simply choose the nearest

point in Euclidean 3-space, many false correspondences can

be detected especially in the case of an articulated object as

shown in Fig.4.

3D Human Body Model

Reconstructed 3D Data

Wrong

Correspondence

Correct

Correspondence

p1

p2

p3

Fig. 4. Correspondence detection

To avoid this problem, the similarity in the normal vector

is also considered and correspondence detection is performed

both in pose space and normal vector space under Kd-tree

framework.

In Euclidean 3-space, Kd-tree is built by recursively

partitioning the data points into two groups along one of
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x,y,z axes where the variance is maximum. In this case, p2

becomes the corresponding point to p1 as shown in Fig.4.

In our method, variance of the normal vector is defined as

in Eq.(9).

normal variance = w · arccos(ni · nj)
2 (9)

where ni is the normal vector of the i-th vertex. w is

determined to be the squared scale of the bounding box of

the skin model so as to balance the variance in Euclidean

3-space.

Data points are sequentially partitioned along one of x,y,z,

normal axes where the variance is maximum. In this case,

p3 becomes the corresponding point to p1 successfully as

shown in Fig.4.

C. Hierarchical estimation

When minimizing Eq.(4), if we try to estimate all the

motion parameters θ, t, R simultaneously, the terminal links

in the link structure tend to fall into local minimum and it

prevents the other links from being aligned correctly.

Therefore, the hierarchical estimation approach is used in

that the translation and rotation of the body center, t, R, are

estimated first and then the joint angles, θ, are estimated

in order from those around the body center, θ 1, to their

descendants, θn, as shown in Fig.5.

To minimize the effect from the not-yet-aligned parts in the

body model, only the vertices on the skin model around the

joint of interest are used during each step of the hierarchical

estimation.

repeat

1.Store the old motion parameters

(t, R) = (t′, R′)

(θ1, θ2, · · · , θN ) = (θ1

′, θ2

′, · · · , θN
′)

2.Estimate the translation and rotation parameters

Solve (t′, R′) that minimize E(t′, R′, θ1, θ2, · · · , θN )

from the gradient
∂E(t,R,θ1,θ2,···,θN )

∂(t,R)
3.Estimate the first joint angle group in the hierarchy

Solve θ1

′ that minimize E(t′, R′, θ1

′, θ2, · · · , θN )

from the gradient
∂E(t′

,R′

,θ1,θ2,···,θN )

∂θ1
· · ·
4.Estimate the N-th joint angle group in the hierarchy

Solve θN
′ that minimize E(t′, R′, θ1

′, θ2

′, · · · , θN
′)

from the gradient
∂E(t′

,R′

,θ1

′

,θ2

′

,···,θN )

∂θN

until

|E(t′, R′, θ1

′, θ2

′, · · · , θN
′)−E(t, R, θ1, θ2, · · · , θN )| < ε

Fig. 5. Order of the hierarchical estimation

Fig.6 shows that the body model is successively converged

to the 3D reconstructed volume during one cycle of the

hierarchical estimation.

D. Backtrack re-estimation

The estimated body model and the 3D reconstructed

volume doesn’t usually coincide. The primary reason is that

(a) (b)

(c) (d)

Fig. 6. Hierarchical estimation: (a) Initial state (b) The translation and
rotation are estimated (c) The first joint angle group is estimated (d) The
n-th joint angle group is estimated

the 3D reconstructed volume is a visual hull, a conservative

estimate of the true shape, thus it gains extra volume espe-

cially around the concave parts. Another reason is that the

deformation of the cloth is not considered in the body model,

which adds extra dissimilarity.

Therefore, error will be accumulated during the hierarchi-

cal estimation process and a gap between the vertices on the

skin model around the terminal link and the 3D reconstructed

volume becomes sometimes large.

To solve this problem, we propose a method in that the

residual errors backtrack from the terminal and all the joint

angles in the limb are re-estimated after the hierarchical

estimation. As shown in Fig.7, a local limb model that has a

limited link structure corresponding to that limb and the skin

model only around the terminal link is temporarily built and

is localized against the 3D reconstructed volume. The resid-

ual is minimized using the same framework described in this

Section, while estimating all the joint angles simultaneously.

Terminal vertices

Local limb model

Body center (fixed)

(a) After hierarchical estimation (b) Backtrack (c) Final estimation

Large gap around the terminal

Fig. 7. Backtrack re-estimation
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IV. EXPERIMENTAL RESULTS

A. 3D reconstruction of human motion

We setup 8 cameras, Sony DXC-9000, on the ceiling and

reconstruct the 3D volume of a target from multiple video

streams following the procedure below.

1) Synchronized 8 images from the cameras are stored in

30fps as shown in Fig.8(a).

2) Silhouette is extracted from each image by a back-

ground subtraction method[15] as shown in Fig.8(b).

3) The volume intersection method[16] is applied to re-

construct a 3D volume and then the Marching Cubes

algorithm[17] is applied to obtain triangular mesh

representation as can be seen in Fig.8(c).

...... ......

(a) (b) (c)

Fig. 8. 3D reconstruction of human motion

B. Evaluation

1) Evaluation of Kd-tree search in pose and normal

space: Fig.9(a) shows a typical situation when Kd-tree

search in pose only space is used, in that both arms adhere

to the trunk. Once a limb is out of tracking and adheres to

the trunk, it is difficult to judge if this pose is right or wrong

automatically. Thus it is important to avoid these situations

in the first place. Kd-tree search in pose and normal space

is a powerful tool for this purpose and it can robustly follow

the motion correctly as shown in Fig.9(b).

3D reconstruction (a) Kd-tree search

in pose space

(b) Kd-tree search

in pose & normal space

Fig. 9. Comparison between two types of Kd-tree search algorithms

2) Evaluation of the hierarchical estimation: Fig.10

shows a typical situation where the hierarchical estimation

works well while the simultaneous estimation doesn’t. As

can be seen in Fig.10(a), the estimation process get stuck

around a local minimum if all the motion parameters are

estimated simultaneously.

Initial state (a) Simultaneous 

      estimation

(b) Hierarchical 

      estimation

Fig. 10. Comparison between two types of estimation processes

3) Evaluation of the backtrack re-estimation: Fig.11

shows the snapshots from the result of motion estimation.

The input is a series of dynamic whole body motion includ-

ing jumps. The length is 400 frames, 13.3 seconds.

Fig.12 shows the plot of the mean error between the

vertex on the skin model and the corresponding point on

the 3D reconstructed volume for each frame. The solid line

is the error from the forward with backtrack algorithm. The

dotted line is the error from the forward without backtrack

algorithm. Table I shows the mean and the standard deviation

of each plot. They show that the algorithm with backtrack

has lower mean error and is much stable.
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Fig. 12. Mean error in the motion estimation

V. CONCLUSION

A marker-less motion capture algorithm for whole body

motion is presented in this paper. Combination of a robust

estimator and ICP with Kd-tree search in pose and normal

space make it possible to track complex and dynamic motion

robustly against noise and interference between limb and
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(a) Captured images from one of the 8 cameras

(b) Reconstructed volume from capture imagess

(c) Estimated motion

Fig. 11. Result of motion estimation

TABLE I

MEAN AND STANDARD DEVIATION OF THE MOTION ESTIMATION ERROR

Mean error [mm] Stand. deviation [mm]

Forward with backtrack 39.899281 4.618398
Forward without backtrack 40.941326 6.035067

torso. Also, the hierarchical estimation and backtrack re-

estimation process enable accurate estimation.

Future work includes the initial pose estimation, automatic

model scale adjustment for tracking people of various height

and generation of humanoid robot motion.
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