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Abstract—This paper presents an approximate belief prop-
agation algorithm that replaces outgoing messages from a
node with the averaged outgoing message and propagates
messages from a low resolution graph to the original graph
hierarchically. The proposed method reduces the computational
time by half or two-thirds and reduces the required amount
of memory by 60% compared with the standard belief propa-
gation algorithm when applied to an image.

The proposed method was implemented on CPU and GPU,
and was evaluated against Middlebury stereo benchmark
dataset in comparison with the standard belief propagation
algorithm. It is shown that the proposed method outperforms
the other in terms of both the computational time and the
required amount of memory with minor loss of accuracy.
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I. INTRODUCTION

Many low-level vision problems such as disparity esti-

mation in stereo [1] and image segmentation [2] can be

formulated by markov random field (MRF). They are known

as NP-hard problems [3] and a suboptimal solution, or the

optimal solution in some cases, can be obtained via a global

optimization framework such as belief propagation (BP) [4]

or graph-cut [5]. Except for some special cases [6], [7], it

is equivalent to solving a multi-label assignment problem

on a loopy graph that requires iterative computations, thus

they have been considered not to be suitable for real-time

applications.

The computational complexity of a standard max-product,

or min-sum, belief propagation algorithm is O(NL2T )
where N is the number of nodes, or pixels, L is the number

of labels and T is the number of iterations [8]. To reduce

the computational time, several methods have been proposed

such as linear time computation of messages [4], hierarchical

belief propagation [4], the use of parallel processors on

Graphics Processing Unit (GPU) [9], etc.

The challenge in implementing the algorithm on GPU,

or embedded systems, is to reduce the required amount of

memory because of the bottleneck in memory bandwidth

or the limitation of available memory. For this, several

methods have been proposed such as predictive coding of

messages [10], tile-based belief propagation [11]!$constant

space belief propagation [12], etc.

However, all the above mentioned methods use the stan-

dard algorithm to compute messages without modification.

In contrast, the proposed method simplifies that algorithm to

reduce the computational time by half or two-thirds and to

reduce the required amount of memory by 60% compared to

the standard method when applied to an image with minor

loss of accuracy. The major contribution of the proposed

method is two-fold: (1) outgoing messages from a node

are replaced with the averaged outgoing message to reduce

both the computational time and the required amount of

memory drastically, (2) averaged outgoing messages are

propagated from a low resolution graph to the original

graph hierarchically to avoid loss of accuracy caused by the

simplification.

The proposed method was evaluated against Middlebury

stereo benchmark dataset [13] in comparison with the stan-

dard belief propagation algorithm. The proposed method can

be easily parallelized, thus it was also implemented and

evaluated on GPU.

II. BELIEF PROPAGATION

Problems such as disparity estimation in stereo or im-

age segmentation can be formulated as to assign a label

{1, . . . , L} to each pixel in an image given an observa-

tion Y = (y1,y2, . . . ,yN ). The optimal label assignment

X = (x1, x2, . . . , xN ) can be obtained by minimizing

E(X) =
∑

i≤N

Di(xi) +
∑

(i,j)

V (xi, xj) (1)

where (i, j) is a set of neighboring nodes in a 4-connected

graph where a node represents a pixel in the image. Di(xi)
is a cost function that evaluates xi assigned to node i where

yi is observed. V (xi, xj) is a penalty function that evaluates

xi, xj assigned to neighboring nodes i, j respectively. A

penalty is usually imposed when different labels are assigned

to neighboring nodes, thus V (xi, xj) is also called a smooth-

ness term.

In loopy belief propagation, eq. (1) is minimized by it-

eratively propagating messages between neighboring nodes.

A message mt
i→j from node i to j at time t is represented

by a L-elements array and xj-th element is computed as

mt
i→j [xj ] (2)

= min
xi



V (xi, xj) + Di(xi) +
∑

s∈Ne(i)\j

mt−1
s→i[xi]





where Ne(i) is a set of nodes adjacent to node i. At t = 0,
all the elements are initialized to 0.
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After all incoming messages to node i converge, the label

x∗
i at node i is estimated as

x∗
i = argmin

xi



Di(xi) +
∑

j∈Ne(i)

mT
j→i[xi]



 . (3)

III. PROPOSED METHOD

A. Averaging of Outgoing Messages

As shown in the third term of the right-hand side of eq.

(2), an outgoing message from a node is computed based

on the sum of incoming messages from the adjacent nodes

except the one in the outgoing direction.

In the proposed method, this third term is replaced with

the sum of all incoming messages multiplied by
#Ne(i)−1
#Ne(i)

as

mt
i→j [xj ] = min

xi

(

V (xi, xj) + Di(xi) (4)

+
#Ne(i)− 1

#Ne(i)

∑

s∈Ne(i)

mt−1
s→i[xi]





where #Ne(i) is the total number of nodes adjacent to node

i. In case of a 4-connected graph, #Ne(i) is 4.

With this new algorithm, all the outgoing messages from

a node become identical to each other, thus the number

of message computation per node is reduced to 1 while

it takes #Ne(i) times per node with the conventional

algorithm. This reduction leads to the reduction of the

entire computational time by half or two-thirds in case

of a 4-connected graph as shown later. Furthermore, the

new algorithm only requires memory for a single outgoing

message per node, while the conventional algorithm requires

memory for #Ne(i) outgoing messages. Thus, the total

required amount of memory becomes 1+1
1+#Ne(i) , i.e. 40%

in case of a 4-connected graph, if the amount of memory

required for the data cost Di(xi) in eq. (4) is the same as

that for a single outgoing message.

The label x∗
i at node i is estimated from eq. (3) in the

same way.

B. Hierarchical Propagation of Averaged Outgoing Mes-

sages

When messages are initialized to 0 and the method

proposed in the previous section is applied, messages in

many nodes converge to local solutions as shown later.

To solve this problem, hierarchical belief propagation [4]

is employed. This method is primarily used to propagate

messages over long distances in a small number of iterations.

Here, it is used to prevent averaged outgoing messages from

falling into local solutions. In the proposed method, the

approximate belief propagation algorithm explained in the
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(a) Low resolution graph (b) High resolution graph

Figure 1. Hierarchical propagation of averaged outgoing messages.

previous section is iterated in a lower resolution graph as

shown in Figure 1 (a) until the messages converge well.

Then, the convergent messages are used as the initial mes-

sages in a higher resolution graph as shown in Figure 1 (b)

and the approximate belief propagation algorithm is iterated

again until the messages converge well in the same way. As

a consequence, initial messages in a higher resolution graph

are getting closer to the optimal messages and the chance

of being trapped into local solutions is reduced.

Hierarchical propagation of averaged outgoing messages

proceeds as follows. Firstly, the data costs in eq. (4) in lower

resolution graphs are calculated as

Dh+1
i′ (xh+1

i′ ) =
∑

i∈[1,4]

Dh
i (xh

i )

where h ∈ [1,H] represents the level of hierarchy. h = 1
means the original highest resolution graph, and the resolu-

tion of a graph is reduced by half as the level is increased

by 1.

Then, the approximate belief propagation algorithm is

iterated in each graph from the lowest resolution to the

original resolution, and the convergent messages in each

graph are propagated to higher graphs as

m
t,h
i→j [x

h
i ] = m

t,h+1
i′→j′ [x

h+1
i′ ] i ∈ [1, 4], j′ ∈ Ne(i

′)

where node j at level h is the adjacent node in the same

direction from node i′ to node j′ at level h + 1.
Note that messages of the nodes surrounded by a solid

line and those surrounded by a dashed line are alternatively

calculated and propagated so as to guarantee the consistent

access to the variables when computed in parallel on GPU.

IV. EXPERIMENT

In this section, the proposed method was evaluated against

Middlebury stereo benchmark dataset [13] in comparison

with the standard belief propagation algorithm in terms of

the accuracy of disparity estimation.

Then, we discuss the reason why the proposed method

works well based on the analysis of the experimental results.

Finally, the proposed method was implemented on CPU

and GPU, and the rate of reduction of the computational

time and the required amount of memory was evaluated.

13731373136913691369



A. Experimental Conditions

In this experiment, the data function in eq. (1) is defined

as

Di(xi) = min(|IL(i)− IR(i− xi)|, τ) (5)

where IL(i) means the i-th pixel value in the left image and

IR(i − xi) means the (i − xi)-th pixel value in the right

image. τ is a constant to suppress the effect of outliers and

we use τ = 30 in this experiment.

The smoothness term in eq. (1) is defined as a linear

function of the difference between labels as

V (xi, xj) = min(c|xi − xj |, d) (6)

where d is a constant to suppress penalty at the occluding

boundary of regions where label changes largely and we use

c = 14.0!$d = 33.6 in this experiment.

By defining the smoothness term as eq. (6), the computa-

tional complexity of message computation becomes linear in

the number of labels without affecting the result as explained

below. With this method, the total computational complexity

is reduced to O(NLT ), however the proposed method

reduces the number of message computations, thus the rate

of reduction of the computational time becomes small if the

proposed method is applied based on this method. However,

this method is widely used as an efficient technique, so we

use this technique for fair comparison.

1) Linear Time Computation of Messages [4]: In eq. (2),

for each element of a message mt
i→j from node i to j, xi

that minimizes the element is chosen from L labels, thus the

total computational complexity is O(L2).
Eq. (2) can be re-written as

mt
i→j [xj ] = min

xi

(V (xi, xj) + ht
i→j [xi]), (7)

ht
i→j [xi] = Di(xi) +

∑

s∈Ne(i)\j

mt−1
s→i[xi]. (8)

If V (xi, xj) is defined as eq. (6), messages can be

computed in linear time as follows. Hereafter, we use m[xj ],
h[xi] instead of mt

i→j [xj ], ht
i→j [xi] if not ambiguous.

1) Initialization

for xj from 1 to L :
m[xj ]← h[xj ]

2) Forward computation

for xj from 2 to L :
m[xj ]← min(m[xj ],m[xj − 1] + c)

3) Backward computation

for xj from L− 1 to 1 :
m[xj ]← min(m[xj ],m[xj + 1] + c)

4) Saturation

for xj from 1 to L :
m[xj ]← min(m[xj ],minxi

h[xi] + d)

Table I
ERROR IN DISPARITY ESTIMATION: H MEANS HIERARCHICAL METHOD,
SBP MEANS THE STANDARD BELIEF PROPAGATION ALGORITHM AND

AOM MEANS THE APPROXIMATED BELIEF PROPAGATION ALGORITHM

BY AVERAGING OF OUTGOING MESSAGES.

Algorithm # iter. Venus Cones
nonocc [%] all [%] nonocc [%] all [%]

H4+SBP 80 0.95 2.06 5.36 13.56
320 0.99 2.10 5.28 13.47

H4+AOM 80 1.62 2.79 5.73 14.21
320 1.62 2.81 5.68 14.13

SBP 80 1.37 2.50 5.06 13.33
320 1.35 2.46 5.09 13.37

AOM 80 8.58 9.92 10.13 19.26
320 7.69 9.03 9.76 18.94

Without BP 0 66.32 66.87 69.62 72.95

To apply this method to eq. (4), we only need to replace

eq. (8) with

ht
i→j [xi] = Di(xi) +

#Ne(i)− 1

#Ne(i)

∑

s∈Ne(i)

mt−1
s→i[xi]. (9)

B. Error in Disparity Estimation

In this section, the proposed method was evaluated against

Venus and Cones datasets in Middlebury dataset [13] in

comparison with the standard belief propagation algorithm in

terms of the accuracy of disparity estimation. The 2 methods

were evaluated with and without hierarchical method, and

4 levels were used when hierarchical method was applied.

Hereafter, H# means Hierarchical method and the number

of levels, SBP means the Standard Belief Propagation algo-

rithm and AOM means the approximated belief propagation

algorithm by Averaging of Outgoing Messages. In addition,

the result without belief propagation is shown where only

the data cost in eq. (1) was evaluated locally.

Table I shows the error in disparity estimation. Following

[1], if the difference between the estimated disparity and the

ground truth is more than 1, it is regarded as an error. “All”

in the Table means the ratio [%] of the number of errornous

pixels over the entire pixels. “Nonocc” means the same

ratio calculated for non-occluded pixels. The accuracy of

H4+SBP and SBP are almost the same and that of H4+AOM

is slightly worse, while that of AOM is considerably bad.

Figure 2 shows the estimated disparity map. We can see that

the error of AOM is clearly large.

C. Discussion

In this section, we discuss why the result of H4+AOM is

good, while the result of AOM is not good.

Figure 3 shows the variance of the final outgoing mes-

sages of H4+SBP (the total number of iterations is 80) where

the black pixels mean the variance is more than 0.1 and

the white pixels mean otherwise. This reveals that the final

outgoing messages from a node are identical to each other

for 85 ∼ 90% of the entire nodes when the standard belief

13741374137013701370



(a) Ground truth (b) H4+SBP (c) H4+AOM (d) SBP (e) AOM

Figure 2. Estimated disparity map against Middlebury dataset: top) Venus and bottom) Cones.

(a) Venus (b) Cones

Figure 3. Variance of the final outgoing messages: a black pixel means
variance > 0.1 and a white pixel means otherwise.

propagation algorithm is applied. From Figure 2 (a), we can

also see that the nodes of large variance correspond to the

boundary of regions where neighboring nodes have different

labels.

In general, the total number of nodes at the boundary

of regions is smaller than the total number of nodes inside

regions where neighboring nodes have the same label. So,

if (1) outgoing messages of the majority of nodes inside

regions converge to the optimal solutions and (2) the labels

of the nodes at the boundary of regions do not change

largely, the outgoing messages of the nodes at the boundary

of regions are smoothed by the propagated correct messages

from both side of the boundary, thus they are expected to

converge to the near optimal solutions.

Since the latter condition depends on the property of an

observation, we focus on the former condition. In conven-

tional belief propagation, messages are initialized to 0 and

are updated based on eq. (2) until they converge. In case of

a loopy graph, eq. (2) is still correct locally and messages

converge to near optimal solutions in most cases. However,

eq. (4) is not correct anymore even locally and messages in

many nodes converge to local solutions as shown in Figure

4 (e).

Figure 4 (a) shows the error in disparity estimation of

H4+SBP and Figure 4 (b)-(e) show the error in disparity

estimation of H#+AOM. Black nodes represent wrong es-

timation, while white pixels represent correct estimation.

“Variance” in the Figure means the mean squared difference

between the initial message at the final hierarchy and the

optimal message calculated over the nodes corresponding to

the white pixels in Figure 3 (a). In other words, it shows how

much close the initial message and the optimal message are.

“Error ratio” in the Figure means the ratio of the wrongly

estimated nodes at the end of iterations.

From Figure 4, the larger the number of hierarchies is, the

smaller “variance” becomes, that means the closer the differ-

ence between the initial message and the optimal message

becomes. At the same time, “error ratio” becomes small,

that means the number of the wrongly estimated nodes be-

comes small. In other words, hierarchical method propagates

averaged messages to higher hierarchies while managing

both avoidance from local solutions and convergence to the

optimal solutions. We can see that this behavior contributes

to minor loss of accuracy of the proposed method. In all

cases, messages in the lowest hierarchy are initialized to 0

and the number of iterations in each hierarchy is 20.

D. Rate of Reduction of the Computational Time and the

Required Amount of Memory

In this section, the proposed method was implemented on

GPU as well as on CPU, and the rate of reduction of the

computational time and the required amount of memory was

evaluated. The algorithms were implemented on CPU (Xeon

3.0Ghz, Memory 2G) using Visual Studio 2008 (C++), while

they were also implemented on GPU (GeForce GTX285)

using CUDA [14].

Table II shows the computational time ([ms]) of 4 algo-

rithms against 2 datasets where the total number of iterations

is 80 for all the trials. “Mem” in the table represents the ratio

of the required amount of memory based on that of H4+SBP.

In both datasets, algorithms on GPU run 40 ∼ 50 times

faster than those on CPU. The fastest algorithm is H4+AOM

(GPU). As for the required amount of memory, H4+AOM

is the second smallest after AOM. However the accuracy of

13751375137113711371



variance=1.49 variance=2.81 variance=4.04 variance=10.74 variance=80.27

error ratio=0.28 error ratio=0.64 error ratio=0.72 error ratio=3.70 error ratio=10.12

(a) H4+SBP (b) H4+AOM (c) H3+AOM (d) H2+AOM (e) H1+AOM

Figure 4. Error in disparity estimation in Venus dataset: a black pixel means a wrongly estimated node and a white pixel means a correctly estimated
node. Variance means the mean squared difference between the initial message at the final hierarchy and the optimal message. Error ratio means the ratio
of the wrongly estimated nodes.

Table II
THE REQUIRED AMOUNT OF MEMORY AND COMPUTATIONAL TIME.

Algorithm Mem Venus Cones
(N=434x383, L=20) (N=450x375, L=60)

[%] CPU GPU CPU GPU

H4+SBP 100 11873 299 42672 1001
H4+AOM 44 5570 126 16656 411
SBP 94 37405 822 130813 2799
AOM 38 17249 340 51128 1159

AOM is not good as described in the previous section, we

can say that the best algorithm is H4+AOM (GPU).

V. CONCLUSION

In this paper, an approximate belief propagation algorithm

is proposed that reduces the computational time and the

required amount of memory by replacing outgoing messages

from a node with the averaged outgoing message. To avoid

loss of accuracy caused by approximation, averaged outgo-

ing messages are propagated from a low resolution graph to

the original graph hierarchically.

The proposed method was evaluated against Middlebury

stereo benchmark dataset in comparison with the standard

belief propagation algorithm, and it was shown that both

the computational time and the required amount of memory

are drastically reduced with minor loss of accuracy. The

proposed method was also evaluated on GPU and it was

shown that the computational time was further reduced.
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