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Abstract. Frequent patterns in video are useful clues to learn previ-
ously unknown events in an unsupervised way. This paper presents a
novel method for detecting relatively long variable-length frequent pat-
terns in video efficiently. The major contribution of the paper is that
Partly Locality Sensitive Hashing (PLSH) is proposed as a sparse sam-
pling method to detect frequent patterns faster than the conventional
method with LSH. The proposed method was evaluated by detecting
frequent everyday whole body motions in video.

1 Introduction

Detection of previously learned human actions in video [1-3] or detection of
irregular, i.e. not learned, human actions in video [4,5] have been an active
research topic because they can be applied to various tasks including content-
based retrieval from video, surveillance, etc.

For this, a human action database is usually built in advance in a super-
vised way by manually annotating a large collection of videos. To accelerate this
process, several methods have been proposed to detect frequent human actions
in video based on frequent data mining techniques [6-9]. This line of research
can be grouped into 2 approaches. In the first approach, a large number of
spatio-temporal patches are extracted from video and are classified into differ-
ent actions [10, 11], however it lacks the ability to detect relatively long actions.
In the second approach, dynamic programming is employed to detect relatively
long actions [12], however the computational complexity becomes O(N?) where
N is the length of a video, thus it is not appropriate to deal with a long video.

To decrease the computational time, Meng et al. proposed a method that
finds data similar to the data at ¢ from the entire input time series by Locality
Sensitive Hashing (LSH) [13] for all ¢ and connects them along the time axis
so as to detect frequent actions from a motion capture data in O(N*+1/) [14].
The problem is that there is a large overlap between the found data at successive
times, thus the search is redundant.

In this paper, we propose a novel method for detecting frequent patterns
in video efficiently where the redundancy in [14] is resolved. In the proposed
method, detected nearby data in the first frame are maintained by a linked list
and are updated along the time axis. However, dynamic change of nearby data is
not handled correctly, thus the linked list is modified based on a small number of
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data sparsely sampled in each frame, whereas nearby data are densely sampled
in every frame in [14] which results in a large computational time.

As a sparse sampling method, Partly Locality Sensitive Hashing (PLSH) is
proposed which is an extension to LSH. Experimental results show that the
proposed method can detect frequent patterns in video much faster than the
conventional method with LSH.

2 Overview of the proposed method

The purpose of this study is to detect unknown frequent patterns appeared in a
d-dimensional time series. Frequent patterns are a set of subsequences of a time
series where minor variation of shape and length is allowed.

Fig. 1 shows a 2D slice of a d-dimensional time series. If a data point o(t)
observed at ¢ is on a frequent pattern, many similar shaped patterns exist at
around o(t). So, if a sequence of data has many other data in its neighborhood,
it can be considered as a good candidate for a frequent pattern.

Here, terminology is defined as follows. ”Neighborhood” is defined as the
inside of a hyper sphere of radius R in d-dimensional space. ” Segment” is defined
as a subsequence of a time series bounded by a hyper sphere. ”Data density” is
defined as the total length of segments in a hyper sphere. Then, the data density
at t is calculated as

D(t)y= ) lo(i) —o(i+ 1) (1)
ieS(t)
where S(t) = {i; ||o(i) — o(t)|| < R}.

Data density is used to evaluate the existence of frequent patterns in each
frame. However, it takes quadratic time in total to calculate data density exactly
in all frames even if a tree-like data structure is used.

To overcome this problem, data density is calculated efficiently by an al-
gorithm outlined in Table 1 using the proposed approximate nearest neighbor
search scheme named PLSH.

At t = 1, a linked list is initialized by checking all N data so that each
element in the linked list holds the endpoints, i.e. the start time (st) and the end
time (ed), of all the segments as in Fig. 1 (a).

From ¢ = 2 to N, the linked list is updated along the time axis. Firstly, the
endpoints of the segments found in the previous frame are shifted so that they
lie on the boundary of the current hyper sphere as in Fig. 1(b). The amount
of shift between neighboring frames is usually very small, so the time taken to
update the linked list can be considered as a constant when the total number
of elements in the linked list is limited. When a segment goes out of the sphere,
it is removed from the linked list. When 2 segments are connected together, the
corresponding elements in the linked list are merged as in Fig. 1 (c).

However, newly appeared segments cannot be detected immediately by the
update method above, so they have to be found and added to the linked list
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Fig. 1. Calculation of data density

separately as in Fig. 1 (d). For this, instead of checking all N data which results
in quadratic time in total, nearby data are sparsely sampled in the proposed
method. If a sample is inside the hyper sphere and is not included in the linked
list yet, the segment including that sample are added to the linked list. A new
segment is not necessarily detected at the time it enters into the hyper sphere,
because it will be detected in the subsequent frames if it is sufficiently similar
to the segment at . When a new segment is detected later, the data density in
the past can be modified at that time.

Then, it is important to select nearby data sparsely and efficiently. To achieve
this, Partly Locality Sensitive Hashing (PLSH) is proposed in Section 3.

Another problem is that divided segments cannot be detected immediately
by the update method above, so they also have to be found separately as in
Fig. 1 (e). For this, nearby data at around ¢ — Tdelay are sparsely sampled in the
proposed method. If a sample is outside the current hyper sphere and is included
in the linked list, the segment including that sample are divided. In this case, a
divided segment is not necessarily detected at the time the hyper sphere divides
it, because it will be detected in the subsequent frames if division is persistent.
When a divided segment is detected later, the data density in the past can be
modified at that time.

Finally, frequent patterns are detected by a global optimization method using
Dynamic Programming as explained in Section 4.
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Table 1. Algorithm to find frequent patterns

1.Att=1:
Initialize a linked list that maintains segments in the hyper sphere. (Fig. 1(a))
2. From t =2 to N:
Update the linked list. (Fig. 1(b),(c))
Detect new segments by PLSH and modify the linked list. (Fig. 1(d))
Detect divided segments by PLSH and modify the linked list. (Fig. 1(e))
3. From ¢t =1 to N:
Detect frequent patterns by a global optimization method.

3 Partly Locality Sensitive Hashing

Partly Locality Sensitive Hashing (PLSH) is an extension to Locality Sensitive
Hashing (LSH) [13] which is an approximate nearest neighbor search algorithm.

3.1 Combining locality sensitive and insensitive hash functions

In PLSH, a set of hash functions g;(p) (1 <1 < L) are defined as

g1(p) =< hs;1(p), - -, hsi,k,(P), hir1(p), ..., hirx,(P) > .

where hs; ;(p) is an arbitrary locality sensitive hash function hs;y : R? — U,
while hi; 1 (p) is an arbitrary locality insensitive hash function hi;y : R - U.
In a projection-based scheme as in Fig. 2, these functions can be defined as

hsi k() = [(Qsik - P+ bsi,k)/Wei k],
Wik (p) = [(@irk - P+ bik) | mod wi i,

where a,b are randomly chosen to satisfy a € R%, ||a|| = 1,0 < b < w for each
hash function.

Approximate nearest neighbor search proceeds as follows. Firstly, L hash
values are calculated for all N data by applying L hash functions and they are
stored in the corresponding hash buckets in L hash spaces. Given an input query
p, L hash values are calculated in the same way and the data in the corresponding
hash buckets in L hash spaces are examined.

3.2 Sparse sampling using PLSH

LSH is not appropriate to select nearby data inside a hyper sphere sparsely
and efficiently because the data in a hash bucket are densely examined as in
Fig. 3(a) [14].
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Fig. 3. Difference between LSH and PLSH

PLSH is useful in this case. In PLSH, an input data point is defined as
d + 1 dimensional vector (pi,...,pa,t)T where the first d elements represent an
original data point and the last 1 element represents the time when the data
point is observed.

A hash function g;(p) is composed of K locality sensitive hash functions
and a single locality insensitive hash function. As for the locality sensitive hash
functions, the last value of as is always 0 and w, is R. As for the locality
insensitive hash function, the first d values of a; is 0 and the last value is 1 so
that data points in neighboring frames never collide in a same hash bucket. This
means the data are scattered to w; (= LIH width) hash spaces.

In this way, data are selected from different and independent hash spaces
in neighboring frames as in Fig. 3(b). The number of data in a hash bucket is
reduced by — and the computational time is reduced similarly without affecting
the probablhty of detecting new segments or divided segments because all data
are examined anyway.

In LSH, similar reduction rate of w% can be achieved by sampling a time
series in w, intervals (= Reduction width) beforehand as in Fig. 3 (¢). However,
reduction rate of — 1wr is achieved in PLSH by combining data reduction (w%)

and data scatteringl (=) as in Fig. 3 (d).
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4 Detection of frequent patterns

Given a time series O = (o(1),---,0(N)), frequent patterns are detected in 2
steps:

1. Detection of frequent patterns using data density
2. Classification of frequent patterns

4.1 Detection of frequent patterns using data density

Firstly, frequent patterns are detected from O irrespective of types of patterns.
This problem is formulated as a combinatorial optimization problem in that
each frame is assigned binary labels as X = (z1, - ,zy) where z; € {1 =
frequent pattern, 0 = not frequent pattern}. This problem is re-formulated as to
find X that minimizes the energy function defined as

E(O’X):Ev(OaX)‘FEd(OvX)‘FEs(X)' (2)

The energy function is composed of 3 terms: velocity term, data density term
and smoothing term.

Velocity term FE, (O, X) penalizes data points with small velocity and is
defined as

|04, ()]
E,(0,X)= —log(1 — -
(0,X) Zt: og(1 —exp (— 1z ))
where < |0, (t)] > is the mean value of |6, (1)].
Data density term E4(O, X) penalizes data points with small data density
and is defined as

D
E4(0,X) = —log(1 — —
1(0. X) Etj og(1 — exp(——
where < D,, (t) > is the mean value of Dy, (t).
Smoothing term F,(X) penalizes different neighboring labels to reject short
patterns and is defined as

E (X)= ZT(It # Z141) - Comooth
t

where Cy ) oot1, 18 @ constant and T'(s) is defined as T'(true) = 1, T'(false) = 0.
Because all the terms in Eq. (2) satisfies the first order Markovian property,
the energy function can be minimized analytically by Dynamic Programming.

4.2 Classification of frequent patterns

Because different types of actions are mixed in the detected frequent patterns,
an agglomerative clustering technique is applied to classify them by iteratively
grouping 2 patterns together whose average distance is smaller than the radius
R of the hyper sphere.



Detecting Frequent Patterns in Video using PLSH 7

a) Bye

Stretch

(¢) Stand-up

Fig. 4. 4 whole

20000+

40000

Density
Density

38000

36000

10000 34000 Ground Truth
(witwr= 70) -
PLSH (w108
32000 PLSH  (wi*wr=210) -
: PLSH NP (wi*wr=_70) -
- S PLSH NP (wi*wr=105) -
. . PLSH NP (wi*yr=210) - -o- - . . . PISHNP (Witwr=210) - -e- -
20 40 80 100 0 20 40 60 80
LIH width LIH width

(a) Video 1 (b) Video 2

Ground Tru(h —_—
I~

8000 2

Fig. 5. Estimation of data density

5 Experimental results

The proposed method was evaluated by detecting frequent whole body motions
in video. To evaluate the sparse sampling methods for detecting new segments
and divided segments, PLSH was compared with LSH. L is fixed to 8 and K is
fixed to 3 in both PLSH and LSH for all the experiments. All the experiments
were performed on a Xeon 3.0GHz PC.

2 videos were prepared that contain several of 4 types of whole body motions
as in Fig. 4. Video 1 contains 5 Byes, 6 Stretches and 5 Stand-ups. Video 2
contains 7 Byes, 7 Stretches, 8 Drinks and 4 noisy motions. Cubic Higher-order
Local Auto Correlation (CHLAC) [15] is used as an image descriptor to represent
patterns in video in a position invariant way.

5.1 Evaluation of sampling methods in data density estimation

As described in Section 3.2, the sparse sampling method using PLSH achieves
(=) and data scattering

()
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Table 2. Evaluation of video 1 [2700 frames]

Action Bye| Stretch| Stand-up| False False |Precision|Recall| Time
Presented # 5 6 5 Positive| Negative [msec]
(1)LSH (w,=1) |5.00| 5.00 5.00 0.00 1.00 1.00 0.94 | 5807
(2)LSH (w,=15)|5.00| 5.00 5.00 0.00 1.00 1.00 0.94 | 512
(3)LSH (w,=70)|5.00| 4.90 | 0.00 | 000 | 6.10 1.00 | 0.62 | 198
(4)PLSH 5.00| 5.00 5.00 0.00 1.00 1.00 094 | 224

Table 3. Evaluation of video 2 [3600 frames]

Action Bye| Stretch| Drink| False False | Precision| Recall| Time
Presented # 7 7 8 | Positive| Negative [msec]
(1)LSH (w,=1) | 7.00| 6.00 | 8.00 1.00 1.00 0.95 0.95 | 13499
(2)LSH (w,=15)| 7.00| 4.00 | 8.00 1.00 3.00 0.95 0.86 | 1134
(3)LSH (w,=70)| 4.00| 0.00 | 7.20 0.30 10.80 0.97 0.51 | 338
(4)PLSH 7.00 3.00 | 8.00 1.00 4.00 0.95 0.82 | 482

Because the computational time is roughly proportional to PR the optimal
w;, w, that does not degrade the detection rate of frequent patterns i.e. accuracy
in data density estimation, should be determined.

Fig. 5 shows the accumulated data density for different pairs of w;, w,.. The
vertical axis represents the accumulated data density and the horizontal axis
represents w;. The polygonal lines in the figure connect the pairs where 1w is
the same. NP (Non Propagation) means data density in the past is not modlﬁed
when new segments or divided segments are detected.

In Fig. 5 (b), data density exceeds the ground truth for some pairs. This is
because divided segments were not detected well in those parameters.

The left most point in each polygonal line, i.e. w; is 1 which means data are
not scattered, represents the case where LSH is applied. From the figure, we can
see that data density is estimated better when w; increases from 1 when e 1w
is a constant, however data density moves away from the ground truth when w;
increases further. This is because data are not sampled sufficiently when one of
w; and w, takes a large value that decreases detection rate of frequent patterns.

The red circles in Fig. 5 (a) and (b), i.e. w; is 10 and w, is 7, were chosen as
the best parameters and were used in the following experiments.

5.2 Detection rate of frequent patterns

4 different sampling methods were evaluated: (1) LSH (w, = 1, no data reduc-
tion)d(2) LSH (w, = 15, experimentally chosen to achieve the same accumulated
data density as PLSH)O (3) LSH (w, = 70, same reduction rate as PLSH)O (4)
PLSH (w;-w, = 70). The detection rate of frequent patterns were summarized in
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Fig. 6. Computational time v.s. amount of data

Table 2 and Table 3. To evaluate the results, Precision and Recall were calculated
as

TP TP

———— Recall= —

TP + FP TP + FN

where TP means True Positived FP means False Positive and FN means False
Negative. Each experiment was evaluated 10 times and the average is shown
because the parameters of hash functions were determined randomly,

Similar detection rate to PLSH was achieved with (1) and (2), but the com-
putational time became longer because the reduction rate was worse. On the
other hand, the detection rate with (3) was considerably bad while the compu-
tational time was slightly better. From these results, we see that PLSH can be
better in both computational time and detection rate than LSH.

Precision =

5.3 Computational time v.s. amount of data

10 videos of different length were generated by simply concatenating the video in
Table 2 with Gaussian noise added. The same 4 methods were applied to these
videos and the results are shown in Fig. 6.

The figure shows the computational time is drastically reduced by data re-
duction and data scattering of PLSH because the number of data in a hash
bucket is reduced.

6 Conclusions

This paper presents a method for detecting relatively long variable-length fre-
quent patterns efficiently from video.

Partly Locality Sensitive Hashing (PLSH) is proposed by combining locality
sensitive hash functions and locality insensitive hash functions. Data reduction
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and data scattering of PLSH enables faster and much accurate detection of
frequent patterns than the conventional method with LSH.
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